
Abstract- In this paper we propose an improved spike triggered 
averaging technique for the assessment of control properties and 
conduction velocity (CV) of single motor units (MUs) during 
voluntary sub-maximal muscle c ontractions. The method is 
based on the detection of multi-channel surface EMG signals 
(with linear electrode arrays) and intramuscular recorded single 
MU action p otentials (MUAPs). Intramuscular e lectrodes are 
inserted taking into account t he M U structural properties 
(innervation zone and tendon locations, length of t he fibers), 
assessed by the linear array surface EMG detection. A technique 
for intramuscular EMG signal decomposition is used to identify 
single M UAP trains. The M UAPs obtained from the 
intramuscular EMG decomposition algorithm are used to 
trigger and average the multi-channel EMG signals. CV of 
single averaged surface M UAPs is estimated b y the use of 
advanced signal processing methods based on multi-channel 
recordings which allow to consistently reduce the variance of 
CV estimates with respect t o traditional two channel delay 
estimators. The number of averaged p otentials can thus be 
reduced, improving temporal resolution. The technique 
proposed is tested with recordings from the tibialis anterior 
muscle of 11 volunteers. It is shown that the method allows the 
assessment of CV changes (fatigue) of single MUs as small as 0.1 
m/s with a limited number of averages (temporal resolution of 1-
2 seconds), leading to a consistent improvement with respect to 
traditional surface EMG spike triggered averaging techniques. 
The method has potential usefulness in a number of basic and 
applied research fields. 
Keywords - electromyography, single motor unit conduction 
velocity, fatigue, spike triggered averaging, maximum likelihood 
delay estimators 

 
I. INTRODUCTION 

 

Intramuscular electromyographic (iEMG) signal 
decomposition allows to extract i nformation about single 
motor unit (MU) firing rate and recruitment t hreshold. 
Nevertheless, many physiological and anatomical properties 
of the detected MUs cannot directly be assessed by iEMG 
analysis. Indications about physiological properties of single 
MUs during muscle activity could however clarify the 
relationships between central motor control strategies, fatigue 
and mechanical properties of the MUs. 
The concomitant recording of iEMG and sEMG would permit 
estimation of single MU control properties (recruitment 
threshold, firing rate) as well as physiological (CV and 
fatigability) and structural (location of the innervation zone, 
length of the fibers, location of the tendon regions) properties 
of single MUs. The c onduction velocity (CV) with which 
action potentials propagate along the muscle fibers is an 
important physiological parameter, which indicates muscle 
fatigue [2][10] and reflects the mechanical properties of the 

MUs [1]. Usually CV is estimated non-invasively from t he 
surface EMG (sEMG) signal without t he separation of the 
contributions of the single MUs (a global CV value is 
obtained). To extract single MUAPs from t he surface 
recordings, a spike triggered approach based on intramuscular 
detected MUAPs can be used. A high n umber of averaged 
potentials is, however, needed to obtain the high signal t o 
noise ratio required for estimating the CV of the detected 
MUAPs with low variance. Moreover, the e stimation of 
single MUAP CV implies careful placement of the electrodes 
since different l ocations along the muscle fibers and/or 
different i nclinations with respect t o the muscle fibers may 
determine large differences in the estimates [6]. 
The aim of this work was to develop a system for improving 
surface EMG spike triggered averaging techniques in order to 
reliably detect single MU CV and CV changes during time 
with high temporal resolution. The method proposed is based 
on the detection of multi-channel surface EMG signals and 
the applications of low variance multi-channel CV estimation 
algorithms. In particular the technique c onsists of the 
following steps (Fig. 1), described below in detail: 1) 
recording of iEMG (with a multi-wire system) and sEMG 
signals (with a multi-electrode system), 2) decomposition of 
the iEMG signal i nto the c onstituent m otor unit action 
potential (MUAP) trains, 3) sliding window spike triggered 
averaging of the multi-channel sEMG with iEMG potentials 
as triggers, and 4) low variance multi-channel single MU CV 
estimation. 

 
Fig. 1. Schematic representation of the detection and processing techniques. 

Four intramuscular EMG signals are detected, decomposed into the 
constituent MUAP trains and used to generate trigger signals for averaging 

14 double differential surface EMG signals using a 30 ms time window. 
Conduction velocity is estimated from a subset of surface averaged EMG 

signals using the maximum likelihood multi-channel delay estimator.  
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II. METHODOLOGY 

 
A. Detection of intramuscular and surface EMG signals 
 
Intramuscular signals have been recorded with the use of four 
wire e lectrodes made of Teflon coated stainless s teel (A-M 
Systems, Carlsborg, WA, USA) inserted in the muscle via 
one needle (23 G). Surface EMG signals were collected by 
the use of a linear array of 16 electrodes (bar electrodes 5 mm 
long, 1 mm diameter, 5 mm interelectrode distance) [8][11]. 
Structural properties of the MUs (innervation zone, tendon 
location, length of the fibers) were assessed by a preliminary 
visual analysis of the multi-channel surface EMG signal 
characteristics. In order to detect common MU activities with 
the two recording systems the surface electrodes were placed 
between the most distal innervation zone (IZ) and the distal 
tendon while the wires were inserted between the most distal 
IZ and the proximal t endon region; i n this way the array 
covered the distal part of the fiber corresponding to 
propagating MUAPs. The inclination of the array was 
selected by visual i nspection of the multi-channel signals in 
order to obtain minimal shape changes of the MUAPs during 
their propagation along the muscle fibers. 
 
B. Decomposition of the intramuscular signals 
 
A simple technique for intramuscular EMG signal 
decomposition was developed. Each channel i s decomposed 
independently and the results from the different channels are 
then compared in order to merge MU firings detected by 
more than one c hannel. Each channel i s decomposed by a 
segmentation phase based on amplitude threshold and a 
classification phase based on h igh resolution alignment by 
spectral m atching [9]. The developed d ecomposition 
technique was tested with methods described in the literature 
[5][7] and provided  results comparable with those obtained 
with other techniques [7] when the signal to noise ratio was 
sufficiently high (> 8 d B) and the number of superimposed 
MUAPs limited. 
 
C. Spike triggered average of the surface EMG signals 
 
The firings of the individual MUs estimated by iEMG signal 
decomposition were used as triggers for the multi-channel 
surface detected MUAPs. A window of 30 ms was used for 
the average of the surface EMG signals. Overlapping epochs 
have been used, so that the step in the averaging process was 
of a single firing (sliding window spike-triggered averaging). 
 
D. Low variance multi-channel single MU CV estimation 
 
The CV estimation using multi-channel t echniques is 
implemented by high resolution fast algorithms [5][6]. 
Double differential signals were used for CV estimation. CV 
is estimated from the channels of the array corresponding to 
unidirectional potential propagation (propagation between IZ 
and tendon region) with minimal shape distortion. The 
channels used for CV estimation were selected automatically 
as the set of channels with shape difference [12] lower than a 
given threshold.  

E. Experimental protocol and data analysis 
 
Eleven h ealthy subjects (3 females, 8 males) with ages 
ranging from 21 to 28 years (mean age ± standard deviation: 
23.4 ± 2 .2 years) participated in the study. No subject had 
symptoms of neuromuscular disorders or ligament problems. 
The study was conducted in accordance with the Declaration 
of Helsinki, approved by the Local Ethics Committee, and 
written informed consent was obtained from all subjects prior 
to inclusion. 
The subject sat comfortably on a chair with the foot of the 
dominant leg fixed in an isometric force brace incorporating a 
torque transducer (Aalborg University, Aalborg, Denmark). 
Invasive and surface e lectrodes for EMG signal detection 
were placed on the tibialis anterior muscle as described 
above. Three measures of the maximal voluntary contraction 
(MVC) force were done. The highest of the three estimated 
maximal forces was considered as the reference MVC. After 
the MVC assessment and 5 min rest, the subject performed an 
isometric contraction at 25% MVC for 60 s. Before and after  
the fatiguing contraction, 10 s recordings were performed at 
rest in order to estimate the noise level. 
All t he data collected were analyzed with the method 
described above. Twenty potentials were averaged to obtain 
each single surface potential. MU CV over time has been 
estimated with the multi-channel m aximum li kelihood 
estimator and, for comparison, with a traditional two channel 
estimator [9]. Linear regressions of CV versus time have been 
computed in order to assess changes of CV over time. The 
slope of the regression line of CV has been used as fatigue 
index and the initial value of CV of the single MUs has been 
defined as the value of the regression line at the initial time 
instant [10]. Finally, the global CV has been also computed 
from t he surface EMG signal by the spectral m atching 
method [9]. For this purpose, the signal has been divided in 
epochs of 0.5 s without overlapping and only two channels 
were used. 
The hypothesis that the CV slope was different from zero was 
tested (at p = 0.05) by linear regression analysis for each MU 
and the standard deviation of estimation (standard deviation 
of the prediction error) has been computed in all t he cases. 
The statistical analysis has been performed for the e ntire 
contraction length (60 s) and also for half of the contraction 
length (30 s). 
 

III. RESULTS 
 

The estimated CV over time for a single MU is shown in Fig. 
2. Two to six channels for CV estimation  corresponding to 
unidirectional propagation with minimal shape distortion of 
the potential were selected in this case. In all t he cases the 
surface averaged p otentials have been obtained from 20 
averages. The improvement i n CV estimation quality 
obtained by increasing the number of channels is evident. The 
large difference in the information obtained by the traditional 
two-channel t echnique and the multi-channel algorithm 
should be noted. Using a two-channel approach it is possible 
to obtain a variance of estimation comparable to that obtained 
by using six channels but it i s necessary to increase 



considerably the number of potentials being averaged, 
thereby decreasing the temporal resolution. 

 
Fig. 2. Example of estimation of single MU CV from averaged surface 

MUAPs. The surface averaged potentials obtained by 20 averages each are 
shown. With six channels clear fatigue pattern is evident (correlation 

coefficient between CV and time statistically different from zero). The CV 
estimation obtained using two to five channels is also shown. 

 
Fig. 3. Examples of instantaneous firing rate estimation and corresponding 

CV estimation over time for three MUs detected during voluntary activation 
of the tibialis anterior muscle in isometric conditions for one minute at 25 % 

MVC. The number of averages is 20 for the three MUs. Decrease of both 
firing rates (especially for MU 2) and CV is evident. 

 
In this particular example, a variation of CV as small as about 
0.1 m/s (decrease of about 2.5 % with respect to initial value) 
can be detected with the proposed technique. 

Fig. 3 shows an example of f atigue analysis of three MUs 
detected from one of the subjects during the one minute 
contraction at 25% MVC of the tibialis anterior muscle. The 
estimated instantaneous firing rate of the MUs is also shown. 
Firing rates and CV of the single MUs are decreasing with 
time as a consequence of muscle fatigue.  

 
TABLE I 

MEAN AND STANDARD DEVIATION OF SINGLE MU CV INITIAL VALUES, SLOPES, CV 
STANDARD DEVIATION WITH RESPECT TO THE REGRESSION LINE (46 MUS) AND 

GLOBAL CV INITIAL VALUES AND SLOPES (11 SUBJECTS) OBTAINED BY TWO AND 
MULTI-CHANNEL TECHNIQUES FROM 60 AND 30 SECOND LONG CONTRACTIONS. 

 
Forty-six MUs have been simultaneously detected by means 
of intramuscular wires and surface array in 11 subjects. The 
mean firing rate of the detected MUs during the first 3 s of 
contraction was 12.7 ± 1.7 pps (pps: pulses per second), thus 
the temporal resolution in CV estimation over time was in 
average around 1 .6 s (corresponding to 20 averages). The 
number of channels selected by the automatic technique was 
between 4 and 8 (5.3 ± 1 .3 channels) depending on muscle 
fiber length. Mean results obtained from 46 d etected MUs 
analysed over  the entire contraction time (60 s) and the first 
half of the c ontraction time are shown (Tab. I). Mean CV 
initial values are not statistically different with two and multi-
channel t echniques but t he standard deviation of initial CV 
values is less than an half when multi-channel techniques are 
used with respect t o what obtained with two channel 
methods. The residual standard deviation with respect to the 
regression line was consistently lower when CV was 
computed using all suitable channels with respect to the two-
channel estimations. In case of 60 second contractions, the 
number of MUs for which fatigue could be detected (slope of 
the regression line statistically different from zero and 
negative) was almost t he same for multi-channel and two 



channel estimation. However, if only the first 30 s of each 60 
s contraction were considered, fatigue could still be detected 
in 30 MUs out of 46 using multi-channel estimation and in 
only 19 MUs out of 46 using two channel estimation. 
 

IV. DISCUSSION 
 

The method p roposed is derived from t he c ombined u se of 
techniques developed previously. The detection of the surface 
EMG signal with linear electrode arrays has been used for 
more than 15 years [8] and refined in more recent years 
[4][6][11]. Spike triggered averaging is a well known method 
and has been applied for single MU force twitch estimation 
and surface potential amplitude e stimation [13]. The main 
contribution of the present work is to adapt these techniques 
for the development of an advanced spike triggered averaging 
method with important im provements in performance with 
respect t o traditional t echniques. The results s hown 
demonstrated that CV changes of single MUs during 
voluntary contractions can be reliably detected with h igh 
temporal resolution. Moreover, no statistical difference 
between CV estimations performed with multi and two 
channel based techniques was found, indicating that the bias 
in CV estimation was not different (end of f iber and IZ 
effects do not have different effects on multi and two channel 
techniques) and that only variance decreased. It should be 
noted that t he comparison between the two-channel and the 
multi-channel based methods has been performed in optimal 
conditions for the two-channel methods. EMG signals were 
in fact collected with linear arrays, with the possibility of 
assessing MU structural properties and of selecting the best 
alignment of the recording electrodes with the muscle fibers. 
Thus it i s likely that t he performance which would be 
achieved with the use of only two couples of recording 
electrodes would be worse than that reported here for two-
channel methods.  
 

V. CONCLUSIONS 
 

A method for the analysis of single MU control and 
conduction properties has been described in this paper. It 
represents a consistent im provement with respect t o 
previously applied spike triggered averaging techniques. The 
elements of novelty with respect t o previous s tudies are: 1) 
the simultaneous detection of iEMG and sEMG signals from 
the same MUs in the two directions of propagation after 
estimating anatomical landmarks of the MUs on the skin with 
the surface array technique, 2) the estimation of CV of the 
single MUs by multi-channel m ethods allowing to 
consistently decrease the variance of estimation, and 3 ) the 
application of the spike-triggered averaging technique of the 
surface EMG signal t o assess muscle fatigue of individual 
MUs. It has been shown that changes in CV of single MUs as 
small as 0.1 m/s can be reliably detected by a limited number 
of averages, thus allowing good temporal resolution (1-2 s). 
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